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Abstract

The ideal MHD stability of a cylindrical screw pinch (i.e., a current-carrying

plasma column embedded into an external axial magnetic field) has been considered in

the past in great detail. However, it turned out that there is still a gap in the analyses of

this classical problem: the existing studies pertain, in fact, to an infinitely long pinch,

where the axial eigenmodes can be represented as exp(ikz). The finite length is then

accounted for by assigning a specific value to k, k=2π/L, with L being the distance

between the electrodes; in this way, one recovers the familiar Kruskal-Shafranov (KS)

stability condition. In the present paper it is emphasized that the solution of the exp(ikz)

type cannot satisfy the boundary conditions at the conducting end plates. When one

properly takes these boundary conditions into account, one finds a different (higher)

value for the critical current. Even in the limiting case of a long-thin pinch substantial

deviations from the KS condition are found. In the general case, a convenient

representation is obtained for the Green’s functions that express perturbations both inside

and outside the plasma in terms of the radial displacement of the plasma boundary. These

expressions are then used in combination with the energy principle to evaluate

corrections to the long-thin approximation. The results obtained bring to a logical close

one of the classical MHD problems.
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UCRL-JRNL-203133



2

I. INTRODUCTION

The screw pinch is a plasma column immersed into an axial magnetic field and

carrying an axial current. The axial current flows between two conducting electrodes

limiting the pinch along the axis. The cylindrical return conductor is situated at some

distance from the surface of the plasma column (Fig. 1).  We consider the

magnetohydrodynamic (MHD) instability of a perfectly conducting plasma; the

electrodes and the side walls are also assumed to be perfectly conducting. The fact that

the axial magnetic field intersects the end surfaces does not contradict this assumption; it

just means that there is a separation of time-scales: the axial magnetic field gets

embedded into the end surfaces on a slow time scale, prior to plasma formation, whereas

the plasma is formed and the instability develops on a short time-scale, at which the skin

penetration of the current into the walls is negligible.

The stability problem in this setting is a canonical problem of ideal MHD. For an

infinitely long column, one can seek a perturbation with an exp(ikz) dependence upon z,

whereas the dependence on the azimuthal angle ϕ can be sought in the form exp(-imϕ),

with m=0, ±1,… . For the case where current flows only along the plasma surface (perfect

skin), the stability boundary is determined by a perturbation with the azimuthal mode

number m=1, i.e., by a helical perturbation of the form expi(kz-ϕ). The pitch of  the most

dangerous perturbation coincides with the pitch of the field line just outside the plasma,

i.e, k B aBe z= ϕ / , where Bϕe is the azimuthal component of the magnetic field on the

plasma surface, and Bz is the (uniform) axial magnetic field [1,2]. [This discussion

corresponds to a pinch with a small axial current, so that ka<<1.] Further references and

detailed discussions can be found in survey papers and monographs, e.g., [3,4].
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Thus far the plasma column length was assumed to be infinite. If it is finite and

equal to L, the usual way of incorporating L into the stability analysis (e.g., [3]) is to

impose periodic boundary conditions at the ends of the pinch, i.e., set

k=2π/L.        (1)

This yields the following expression for the critical current [2,3]:

I
a cB

LKS
z=

π 2

.        (2)

Here and below we are using the CGS (Gaussian) system of units. This current is usually

called the “Kruskal-Shafranov current,” whence the subscript “KS” in Eq. (2).

As, at I=IKS, the pitch of the most unstable helical mode coincides with the pitch

of the magnetic field line on the plasma surface, the magnetic field outside the plasma is

not perturbed at all. This is why the radius of the external wall, b, does not enter

expression (2).

Such an approach is justified in the case of a toroidal system where indeed the

periodicity constraint yields a proper accounting for the finite length of the plasma.

However, this approach is not quite satisfactory in the problem of a finite-length screw

pinch. Namely, the boundary conditions at the conducting end plates require the plasma

tangential displacement at the end plates to be zero (as, otherwise, a finite tangential

electric field would have appeared at the perfectly conducting plate). On the other hand,

the helical perturbation expi(kz-ϕ) is not zero at any point along z, including z=0,L, and,

accordingly, one just cannot satisfy the aforementioned boundary conditions (Fig. 2a).

The assessment of this problem will be presented in this paper.  We show that, indeed,

proper accounting for the end boundary conditions raises the critical current above the

level (2) and brings up other modifications to the standard helical solution.
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Our paper provides some new insights into the long-standing theory problem and,

in this regard is of some tutorial value. It also provides tools for a quick assessment of the

pinch stability in a long-thin approximation. It describes a consistent approach to stability

of screw pinches with an arbitrary aspect ratio.

To put our results in context with previous studies, we note that the issue of non-

periodic boundary conditions was considered by Freidberg, Goedbloed, and Rohatgi [5],

who looked into the problem of MHD stability of a toroidal plasma limited by a

conducting poloidal limiter. In this case, the zero-displacement boundary conditions have

to be imposed on the surface of the limiter, at some r=r0, whereas in the inner part of the

plasma one has to use a periodic boundary condition. (In Fig. 1a, this geometry would

correspond to a hole of a radius a  in the end electrodes, with the system being

periodically extended in the z direction.) The authors of [5] have shown that a substantial

stabilizing effect on the external kink in a “rectified” tokamak comes out of the limiter

constraint. Lansky and Stchetnikov (Lansky, private communication to D. R.) have used

the energy principle to consider stability of a long pinch with respect to the m=1 mode

with rigid lateral displacements of the plasma “slices.” Their stability criterion coincides

with one of the results of our paper, Eq. (45). (See Ref. 6 where Lansky’s and

Stchetnikov result was quoted). In our analysis we use also general results of papers [4,

7], referencing them in the appropriate places of our paper.

The paper is organized as follows: In Sec. II, we present basic equations

describing equilibrium and stability of the cylindrical screw pinch. We include the

possibility of the presence of the hard conducting core (Fig. 1b). We assume that the axial

current is a combination of a uniform current inside the pinch and a surface current on the
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plasma-vacuum interface. The next two sections, Secs. III and IV, are central for the

paper. In Sec. III, a long-thin approximation, L>>b, is considered and a general eigen-

equation is derived. In Sec. IV, we provide a detailed analysis of the simplest case where

there is no central insert, and where only the surface current is present. We show that,

with a proper accounting for the boundary conditions, the results are quite different from

those represented by Eq. (2). At the end of this section, based on the energy principle, we

evaluate corrections to the long-thin approximation. In Sec. V, based on the eigen-

equations of Sec. III, we obtain stability criteria for various ratios of the surface-to-

volume current, in the presence of the central rod. Finally, Sec. VI contains a discussion

of our results. Some particularly lengthy equations are  moved to the Appendix.

II. BASIC EQUATIONS

A. Unperturbed state.

In the unperturbed state, there is a uniformly distributed axial current inside the

plasma, so that the azimuthal magnetic field is a linear function of the radius:

B
r

a
B iϕ ϕ=        (3)

where Bϕi is the azimuthal magnetic field on the inner side of the plasma boundary. If

there is an axial surface current, then the magnetic field on the outer side of the plasma

boundary, Bϕe, is different from Bϕi.

The relative magnitude of the uniform current inside the column with respect to

the total current (which includes the surface current at the plasma-vacuum interface) can

be characterized by the parameter D which is the ratio of Bϕi  to Bϕe:

D
B

B
i

e

= ϕ

ϕ

      (4)



6

The parameter D varies in our analysis from D=0 (no bulk current) to D=1 (no surface

current), Fig. 3.  We do not consider a conceivable (but somewhat artificial) case of

oppositely-directed bulk and surface currents (D<0).

If a central conducting rod is present (Fig.1b), the current in it is assumed to be

such as to maintain the dependence (3) in the plasma region; in other words, the rod

current is equal to the plasma current that would have flowed in the zone occupied by the

rod. The axial magnetic field is assumed to be uniform and equal to Bzi inside the plasma

and Bze outside the plasma. In the equilibrium,

∂
∂ π

ϕp

r

rB

a
i+ =

1
2

0
2

2
       (5)

At the boundary, in the unperturbed state,

p
B B B B

zi i ze e+ + = +
2 2 2 2

8 8 8 8π π π π
ϕ ϕ .        (6)

The geometry of the system will be characterized by two dimensionless

parameters (each less than unity):

η ζ= =( / ) ; ( / )a b c a2 2 .        (7)

B.Perturbations

1. Equations in column

The linearized  equations  for  incompressible ideal  MHD are (e.g., [3]):

ρ
∂
∂

δ
π

δ δ
2

2

1
4

ξξ
t

P= −∇ + ⋅ ∇ + ⋅ ∇[ ]( ) (B B B )B ,        (8)

δB B= ∇ × ×ξξ ,        (9)

∇ ⋅ =ξξ 0,      (10)
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where ξξξξ is the displacement of a fluid element from its equilibrium position; other

perturbations have a prefix δ; the quantity δP is defined as:

δ δ
δ
π

P p= +
⋅B B
4

.      (11)

For perturbations having the exp(-iωt-imϕ) dependence on time and azimuthal angle and

for the assumed uniform current distribution inside the column  [Eq. (3)], Eqs. (8) and (9)

become:

− = −∇ + + ×ω ρ δ
π

δ
π

δϕ2 1
4

2

4
ξξ P Q

B

ai
i

z
ˆ B e B     (12)

δB Qi= ˆ ξξ      (13)

Q̂ B
z

imB

ai zi
i≡ −











∂
∂

ϕ      (14)

Note  that  the operator Q̂i defined by the latter equation does not  depend on r and,

accordingly, commutes with the differentiations over r. Substituting Eq. (13) into Eq.

(12), one obtains:

− = −∇ + + ×ω ρ δ
π π

2 ϕξξ P Q
B Q

ai
i i

z

1
4

2

4
2ˆ

ˆ
ξξ ξξe      (15)

One can express ξξξξ in terms of ∇δP  via a symbolic solution of Eq. (15):

ω ρ+
1

4π π

ω ρ
π

δ
π

δ
π ω ρ

π

2 ϕ

2 ϕ ϕ

ˆ ˆ

ˆ
ˆ ˆ

ˆ

Q
B

a
Q

Q P
B Q

a
P

B

a

Q

Q

i
i

i

i
i i

z
i i

i

2
2 2

2

2

2 2

2 2

2

1
4 2 2 1

4









 −























=

+








∇ − ×∇ +











+










ξξ

e ezz

P

z

∂δ
∂

              (16)

Of course, for the perturbation ~exp(ikz), one recovers the results presented in Refs. [4]

and [7]. [Note that we are seeking the helical solution of the form exp(ikz-imϕ).] By
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taking the divergence of this equation and using the incompressibility condition (10), one

obtains a single equation for the pressure perturbation:

ω ρ
π

δ
π

∂ δ
∂

ϕ2 2
2

2

2

2
2

2

1
4 2

0+








 ∇ +









 =ˆ ˆQ P

B

a
Q

P

zi
i

i      (17)

The boundary conditions at the end plates are those of zero plasma displacement:

the normal component is zero because of the assumed impermeability of the plates; the

tangential one is zero due to line-tying at the perfectly conducting walls permeated by the

unperturbed normal magnetic field. Therefore,

ξ ξϕr z L z z L, , ,;= == =0 00 0      (18)

The normal displacement must be zero also on the surface of the inner rigid cylinder (if

one is present):

ξr r c= = 0      (19)

If there is no inner cylinder, one has to use the condition of regularity of the solution at r=0.

At the lateral boundary of the pinch, the condition of continuity of the normal component

of the momentum flux on the perturbed surface must hold. This condition is (Cf. [3,4]):

δ
δ
π

ξ
π ϕ ϕP

a
B Be r

i e=
⋅

+ −( )B Be

4 4
2 2      (20)

2. Vacuum region

The magnetic field perturbation in the vacuum region is curl-free,

  δ ψ
r
B = −∇ ,      (21)

 and can be determined from solving the following equation:

∇ =2 0ψ ,      (22)

subject to boundary conditions (e.g., [3], [4]):
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B
z

imB

a r
r aze

r e
r

∂ξ
∂

ξ
∂ψ
∂

ϕ− = − =,      (23)

∂ψ
∂r

r b= =0,      (24)

∂ψ
∂z

z L= =0 0, ,           (25)

corresponding to perfectly conducting material walls and the plasma.

The difficulty of the problem under consideration is related to the observation that

the solution cannot be represented as the product of the functions depending only on z

and only on r. If one tries to do that, one immediately finds that it is impossible to satisfy

all the boundary conditions. This inseparability of the variables makes the problem quite

complex in the general case. There is, however, a limit in which the analysis becomes

quite straightforward and which still yields interesting information. This is the limit of a

long-thin pinch, which we consider in the next section.

III. LONG-THIN APPROXIMATION

In this section, we consider a pinch whose length L considerably exceeds the

transverse dimension, L>>a, b, so that there is a small parameter in the problem:

ε ~
b

L
<<1      (26)

If we are no more than the order of unity beyond the stability boundary, then, as we shall

see (and as it qualitatively follows from the KS criterion),

B

B
i e

z

ϕ ε, ~      (27)
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A.Solution in the vacuum region

The smallness of the parameter ε [Eq. (26)] allows one to neglect the term

∂ ψ ∂2 2/ z  in the left-hand side of equation (22), because it is of order of ε2 compared to the

remaining terms. Thereby one obtains:

1
0

2

2r r
r

r

m

r

∂
∂

∂ψ
∂

ψ− =      (28)

The solution of this equation satisfying the boundary condition (24) is:

ψ = +








C z r

b

r
m

m

m1

2

( )      (29)

The z-dependence of the coefficient C1(z) is thus far undefined; what is important is that

the length-scale of its variation is of order L, much greater than b.  Here and below we

assume that m>0; this does not affect results in any substantial way; it just allows us to

write m instead of |m|.

The coefficient C1 is related to the radial displacement of the plasma boundary via the

boundary condition (23):

Q̂
mC

a

b

a
ae

m

m
mξ0

1
2

= −








 ,      (30)

where

ξ ξ0( ) ( , )z r a zr≡ = ,      (31)

and the operator Q̂e  is defined analogously to Eq. (14), with a substitution i→e. Then,

using the pressure boundary condition (20), one obtains an expression for the pressure

perturbation δP a( )  in terms of the displacement of the boundary:

δ
π

η
η

ξ
π

ξϕ ϕP a
a

m
Q

B B

a

m

m e
i e( ) ˆ= −

+
−

+
−

4
1
1 4

2
0

2 2

0           (32)
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B.Solution inside the plasma

By inspecting the relative value of the terms in Eq. (17), one finds that the last

term contains a small parameter ε2. We, therefore, neglect it. Likewise, one can neglect

the second derivative with respect to z in ∇2. The remaining equation,

ω ρ
π

δ2 2
2

21
4

0+








 ∇ =⊥Q̂ Pi      (33)

 contains two operators acting on δP , ω ρ
π

2 2
2

1
4

+








Q̂i and ∇⊥

2 . The eigenfunction of the

outer one corresponds to Alfvén modes propagating independently over the various flux

surfaces (this operator does not depend on r, so that its eigenfunction can be an arbitrary

function of r). One can check that the z-dependence of the unstable solution that we

eventually find does not make this operator zero. So, we conclude that Eq. (33) reduces to

∇ ≡ − =⊥
2

2

2

1
0δ

∂
∂

∂δ
∂

δ
P

r r
r

P

r

m P

r
.      (34)

Now, by taking the divergence of Eq. (15), and using Eqs. (10) and (34), one finds

that, up to terms of second order in ε, one has ez ⋅ ∇ × =⊥ξ 0, i.e.,

ξξ χχ⊥ ⊥= −∇ ,      (35)

where χ is some scalar function. Taking the divergence of this equation, one finds that,

up to terms of second order in ε,

∇ ≡ − =⊥
2

2

2

1
0χ

∂
∂

∂χ
∂

χ
r r

r
r

m

r
.      (36)

Solution of this equation that satisfies the boundary condition (19), ∂χ ∂/ r r c= = 0, is:

χ = +








C z r

c

r
m

m

m2

2

( ) .      (37)
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The coefficient C2 can be expressed in terms of the radial displacement of the boundary,

i.e., in terms of the function (31):

C z
z

mam m2
0
1 1

( )
( )
( )

= −
−−

ξ
ς

     (38)

where ζ is defined by Eq. (7). The perpendicular displacement ξξξξ⊥, according to (35), is

proportional to ξ0(z); therefore, the boundary condition ξ⊥ = =z L0 0,  will be satisfied for

any radius r just by setting ξ0(z=0,L)=0. This is a feature of the long-thin approximation.

By returning to Eq. (15), one then finds the following relationship between ξ0 and

δP(a, z):

δ ω ρ
π

ζ
ζ π

ξϕP a
a

m
Q i

B

a
Qi

m

m
i

i( ) ˆ ˆ= +










+
−

+








2 2

0

1
4

1
1 2

.      (39)

Finally, by using Eq. (32), one finds the following eigen-equation for ξ0:

ω ρ
π

ζ
ζ π

ξ
π

η
η π

ξϕ ϕ ϕ2 2
0

2
2 2

2 0

1
4

1
1 2

1
4

1
1 4

+










+
−

+








 = −

+
−

+
−









ˆ ˆ ˆQ i
B

a
Q Q m

B B

ai

m

m
i

i

m

m e
i e       (40)

This equation is the basis for the stability analysis in a long-thin approximation.

In order not to introduce additional parameters of order 1 into the problem, we

assume that

Bze=Bzi≡Bz.      (41)

This assumption corresponds to a low-pressure plasma, typical of long-thin pinch

equilibria. An analysis of the general case (in terms of the Bze/Bzi ratio) does not raise any

significant new insights; it just makes all the calculations more lengthy. Also, the

assumption (41) is the one normally made in reference to the “standard” KS criterion (Cf.

Ref. [3]). Equation (40), with the condition (41) imposed, can then be rewritten as:
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∂ ξ
∂

∂ξ
∂

α
πρω

ξ
2

0
2

0
2

2

2
2

02
4

0
z

iK
z B

K
z

− + −












=˜      (42)

where

K
B

aB
D m me

z

m

m

m

m
=

+
−

−








+

+
−













α
ζ
ζ

η
η

ϕ
1

1
1

1
1
1

     (43)

K̃ m
B

aB
D m me

z

m

m

m

m
2

1

2

2 1
1

1
1
1

1=










+
−

−








+

+
−

−






















α
ζ
ζ

η
η

ϕ      (44)

α
ς
ς

η
η1

1
1
1

1
1

=
+
−

+
+
−










−m

m

m

m
; α

ς
ς

α2 1

1
1

=
+
−

m

m ,                  (45)

and coefficients D, η, and ζ are defined by Eqs. (4), (7).

IV. THE CASE OF  ZERO VOLUMETRIC CURRENT AND NO CENTRAL ROD

This case deserves special attention for two reasons: first, this case is the one

normally considered in the derivation of the Kruskal-Shafranov stability criterion (2)

(See, e.g., Ref. 3). Second, calculations in this case are relatively brief and allow one to

get to the essence of the problem without being trapped in lengthy equations. For the

same reason, we also assume that the central rod is absent. In this case, one has ζ=0 and

D=0, so that

            K
m B

aB

m
e

z

=
+( )1
2
η ϕ ;  K̃

B

aB
m me

z

m

m
2

2
1
1

=








 −

−
+









ϕ η

η
;  α α

η
1 2

1
2

= =
− m

     (46)

A. Reproducing the Kruskal-Shafranov stability condition

We first demonstrate that our approach reproduces the KS stability criterion. For

the infinitely long pinch, one can seek a solution of Eq. (42) in the form exp(ikz). This

yields the following dispersion relation:



14

k kK K
Bz

2 2
2

2

22
4

0− + − =˜ α
πρω

     (47)

Using Eq. (46) one finds that

           ω η
πρ

η
πρ

η
ηϕ ϕ2

2

2

2 2

21
2 2

1
2

1
2

1 1( ) ( )
( )

( )− = − +












+
+

−








 −m z e

z

m e
m

mB

a
ka

m B

B
m

B

a

m
.    (48)

For m≥2 the system is obviously stable (the RHS is manifestly non-negative). For m=1,

Eq. (48) can be written as:

ω η
πρ

η ηϕ ϕ2
2

2
2 2

2

1
2

1( ) ( )− = − + +






















B

a
k a ka

B

B

B

B
z e

z

e

z

.     (49)

For any given k, at a small enough current (small Bϕe), the system is stable. However,

with a growing current (growing Bϕe) the r.h.s. of Eq. (49) eventually becomes zero,

corresponding to marginal stability. This happens at

B kaBe zeϕ =      (50)

Note that the parameter η has dropped out from this expression.

If one now imposes the periodicity condition (1), one finds from (50) the standard

Kruskal-Shafranov expression (2) for the critical current (Cf. Eqs. (7.7)-(7.9) of Ref. [3]).

The dispersion relation (49) predicts stability if, for a given k, the current becomes

larger than a certain level, so that B B kae zϕ η/ /> . For k=2π/L, the stability reappears at

I

IKS

>
1
η

     (51)

This happens because of the stabilizing effect of the outer conducting shell. When the

shell is very far away, η→0, the stabilizing effect disappears. As we shall see in the next

section, the reappearance of stability is entirely related to the use of periodic boundary

conditions.
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B.  The effect of boundary conditions

Now we return to Eq. (42) and recall that one has to impose two boundary

conditions,

ξ0(z=0)=0; ξ0(z=L)=0, (52)

not just the periodicity constraint. The solution of Eq. (42) satisfying the boundary

condition (52) at z=0 is

ξ0 1 2= ( ) − ( )[ ]C ik z ik zexp exp (53)

where C is an arbitrary constant and k1 2,  are the two solutions of Eq (47),

k K K K
Bz

1 2
2 2 2

2

2

4
,

˜= ± − +
πα ρω

 (54)

To satisfy the second of the boundary conditions (52) (at z=L), one has to have

k k
L

n1 2

2
− =

π
 (55)

with n=1,2,3,… . It is clear from Eqs. (54), (55) that k1 and k2 can be expressed as:

k K
n

L
k K

n

L
n n

1 2
( ) ( );= + = −

π π
,  (56)

The eigenfunctions

f
e

e en
iKz in z

L

in z

L( ) ( )= −
−

2

π π

 (57)

form an ortho-normal set. The mode with the lowest stability threshold is, obviously, the

n=1 mode. For it

4 2
2

2
2 2

2
πα ρω π

B
K K

Lz

= − +








˜ (58)

Equations (47) and (52)-(58) pertain actually to arbitrary values of D and ζ, not only to

D=ζ=0.
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Returning to the case where D=ζ=0, one finds from Eq. (58)  the following

expression for ω2:

ω
πρ

η
η

πϕ

ϕ

2
2

2

2
2

4 2
1

1

2 1

2
=








 +( ) − +

−( )








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













B

a

m
m

aB

LB
e m

m
z

e

(59)

For m≥2 the system is universally stable. For m=1, the dispersion relation becomes

ωω
ππ

ηη ρρ
ηη

ππ
ϕϕ2

2

2

2

2

2 1
1 1

2
=

−( )
− −( )

























B

L

LB

aB
z e

z

(60)

At large-enough current the system becomes unstable. This obviously happens at

I I
I

crit
KS> ≡
−1 η

(61)

One sees that there is a substantial difference between Eqs. (2) and (61) in that the system

with the boundary conditions properly imposed becomes more stable and the critical

current becomes dependent on the geometrical factor η.

Another important difference with the case of a periodic boundary condition

(Section IV.A)  is that the system remains unstable at a large current (there is no upper

stability boundary defined by Eq. (51)). This is so because, in the case of periodic

boundary conditions, the mode structure was determined once and for all by Eq. (1) and

didn’t depend on the plasma current. Conversely, in the case of two boundary conditions

(52) properly taken into account, the mode structure does change with the current. Eqs.

(46) and (56) show that

k
L

I

I
k

L

I

IKS KS
1
1

2
11 1 1 1( ) ( )( ) ; ( )= + +









 = + −











π
η

π
η     (62)

At the stability boundary, I IKS/ ( )= − −1 1η , one has
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k
L

k
L1

1
2
12 1

1
2

1
( ) ( );=

−
=

−
π

η
π η

η
    (63)

The mode structure for several pinch currents is shown in Fig. 2 (b,c).

Only in the limit of a far-away wall, η→0, is the KS result recovered. This is easy

to understand: in the case of a far-away wall, translation of the pinch in the x or y

directions does not change the magnetic field outside the column (in the frame attached to

the column axis). Then, by superposing such a translation with the purely helical

perturbation exp(ikz-iϕ), k=2π/L, one can adjust the translation in such a way that both

foot points of the column would remain in their initial positions (i.e., a zero displacement

boundary condition would be satisfied at the end plates). This structure of the unstable

perturbation at η=0 automatically comes out of Eq. (63), where k2 indeed becomes zero,

meaning a mode which is a pure translation.

C. Corrections to the long-thin model

There are two types of corrections (in the parameter ε) to the expressions for the

critical currents obtained in the previous section. The first correction comes from the fact

that we have ignored the terms ∂ δ ∂2 2P z/  and ∂ ψ ∂2 2/ z  when solving equations

∇ =2 0δP and ∇ =2 0ψ  (see, e.g., Eq. (28)). Retaining these terms will, obviously, give

rise to corrections of order ε2 to the zero-order approximation.

The second correction is related to the fact that we have not yet used the condition

of zero normal displacement ξz at the end walls (the second of Eqs. (18)). As one can

check, our approximate solution does not satisfy this condition. Whence, the solution

inside the plasma has to be adjusted at a distance ~ a from the end-walls to satisfy this

boundary condition. Analogously, our solution does not exactly satisfy the condition of
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zero perturbation of the normal component of the magnetic field at the surface of end-

plates in the vacuum region (a<r<b): in the solution (29) ∂ ∂C z1 0/ ≠  at z=0, L. The

combination of these factors is the second source of correction to the eigenfunction and to

the critical current.

The corresponding adjustment to the eigenfunction occurs in the zone which is at

a  distance ~ a from the end-plate. The eigenfunction ξ0(z) here is small, ~ a/L compared

to its maximum near the midplane.  Accordingly, the correction to the critical current

should be ~ a2/L2 ~ε2 i.e. of the same order as the first correction. Therefore, one can

expect that our results for the critical current have an accuracy ~O(ε2).

D. The energy principle

To consider the problem in a more quantitative fashion, one can use the energy

principle. We pursue this approach for the case of a zero distributed current and derive

the energy principle free of any assumptions regarding the aspect ratio. The potential

energy of perturbations, W, is expressed as an one-dimensional functional, in terms of a

single function, ξ0(z)≡ ξr(r=a,z).

Our plan is to express the pressure perturbation in the plasma and the magnetic

field perturbation in the vacuum in terms of the displacement of the plasma boundary,

ξ0(z)≡ξr(z,a). We will then use the following expression for the energy perturbation:

 W a dz P
B

a
c ce e

e
L

= − − ⋅ −






















+











∫π ξ δ

π
δ ξϕ

0

2

0
0

1
4

* . .B B ,      (64)

where δP and δBe are taken at r=a. This is nothing more than the work performed by the

virtual displacement of the interface against the imbalanced pressure force, Eq. (20).

Equation (64) can be easily reduced to the standard expression for the potential energy
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perturbation as presented, e.g., in Refs. 3, 4. The system is unstable if W is negative.  The

stability boundary corresponds to the case where the maximum of W over all the trial

functions is zero. As all the quantities in the RHS will be expressed in terms of the

displacement of the boundary, ξ0(z), Eq. (64) is a one-dimensional functional. All the

boundary conditions will be folded into this equation – whence the convenience of this

representation.

For the case of zero distributed current (Bϕi=0), δP satisfies the Laplace equation

(as is clear from Eqs. (12) and (10)):

1
0

2

2

2

2r r
r

P

r

m P

r

P

z

∂
∂

∂δ
∂

δ ∂ δ
∂

− + = .      (65)

The boundary conditions for this equation in the radial coordinate are the absence of a

singularity at r=0 and the condition

∂
∂ π

∂ ξ
∂

P

r

B z

zr a
z

= =
2 2

0
24
( )

     (66)

at r=a. The latter condition is just the radial component of Eq. (15) with ω=0 and Bϕ=0,

taken at r=a; ξ0, as before, is ξr(z, a).

To find the boundary conditions in the z direction, we consider the z component

of Eq. (15), which reads:

∂
∂ π

∂ ξ

∂
P

z

B

z
z z=
2 2

24
.      (67)

Integrating it once and taking into account the first of the boundary conditions (18) and

Eq. (10), one finds that

δ δ
π

∂ξ

∂
P r z P r

B r z

z
z z( , ) ( , )

( , )
= +0

4

2

          (68)
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and δ δP r P r L( , ) ( , )0 = . Integrating Eq. (68) and taking into account the second of the

boundary conditions (18), one then finds two boundary conditions for δP:

δ δ δP r P r L
L

P r z dz
L

( , ) ( , ) ( , )0
1

0

= = ∫      (69)

The two boundary conditions (69) and the two radial boundary conditions (Eq. (66) and

regularity at r=0) allow us, in principle, to express the pressure perturbation in terms of

the displacement of the boundary of the plasma column.

We decompose the perturbation of the effective pressure δP r z( , ), as a function of

r, over a complete orthogonal set of functions J r am sµ /( ), where  Jm is the Bessel function

and µs is the s-th root of the equation ′ ( ) =Jm sµ 0, s=1,2,…. As we shall see below, the use

of this basis allows one to naturally fold into the analysis the boundary condition (66). To

find the Fourier coefficients Fs(z) in the expansion

δ µP J r a F zm s
s

s=∑ ( / ) ( )      (70)

one has to multiply Eq. (65) by r J r am sµ /( ) and integrate from 0 to a. In this way, after

two integrations by parts, and taking into account the boundary condition (66), one

obtains

∂
∂

µ
π

∂ ξ
∂

2

2

2

2

2 2
0

24
F

z a
F

u B

a z
s s

s
s z− = −      (71)

where

u J xJ x dxs m s m s=








∫
−

( ) ( )µ µ2

0

1 1

     (72)

For brevity, we skip the subscript “m” on µ, F, and other similar quantities.
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The lengthy solution of Eq. (71) subject to boundary conditions (69) imposed on

the functions Fs is presented in the Appendix.

In the vacuum region we decompose the potential ψ over an orthogonal set of

functions

Y
J r b

J

N r b

Nm
m s

m s

m s

m s

≡
′

−
′

( / )
( )

( / )
( )

ν
ν

ν
ν

     (73)

where νs is the s’th  root of the equation

′
′

−
′
′

=
J a b

J

N a b

N
m s

m s

m s

m s

( / )
( )

( / )
( )

ν
ν

ν
ν

0      (74)

The function Ym has a zero derivative at r=a,b. One has:

ψ ν=∑Y r b G zm s
s

s( / ) ( ) .     (75)

Multiplying Eq. (22) by rYs , integrating from r=a to r=b, and taking into account the

boundary conditions (23) and (24), we find that  Gs satisfies equation:

∂
∂

ν ∂ξ
∂

ξ
ϕ

2

2

2

2
0 0G

z b
G

w

a
B

z

im

a
Bs s

s
s

z e− = − −








,      (76)

where

w Y xY x dxs m s m s=












∫
−

η ν η ν
η

( ) ( )2
1

1

.      (77)

The solution of Eq. (76) is presented in Appendix 1.

Inserting the functions (70) and (75) [which are now completely defined by virtue

of Eqs.(A.1) and (A.3)] in Eq. (64), one finds a general expression for the functional (64),

free of any assumptions regarding the parameter ε. We leave the analysis of the aspect

ratio ~ 1 for the future work. Here we limit ourselves just to a comment that, in order to
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find the stability margin at the aspect ratio ~1, one can use the Galerkin-Ritz approach,

with the basis functions (57).

E. Evaluating terms ~ εεεε2

1. Evaluating Fs and Gs

To evaluate the terms ~ε2 , we substitute the solution (53), with k1,2 as in Eq. (62),

as a trial function into the functional (64). As the function (53) is not an exact solution,

what we find is not the minimum value of the functional. Therefore, if we set our

approximate expression for W to zero, and find from this equation the azimuthal magnetic

field Bϕe, the result will be an upper bound estimate for the critical field (and,

accordingly, to the critical current).

As in a slender pinch without distributed current only the m=1 mode is unstable,

in the rest of this section we assume that m=1. For ξ0 as in Eq. (53), with C=1, the

expressions for Fs and Gs [which determine the functions δP and ψ via Eqs. (70) and

(75)] read:

F
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23

B
w e
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k k B k k
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where us and ws are determined by Eqs. (72) and (77), and κ µs s a= / , q bs s= ν / . For

brevity, we skip the superscript “(1)” on k1,2.

We  have  used  several  approximations  in  the derivation of these expressions:

i) As we are interested in large values of the parameters κs sL q L, , we have neglected

terms that are exponentially small in these parameters. ii) The terms containing

coefficients A±, B±  are substantially different from zero only near the walls, at distances

~εL. At these distances, the function ξ0 is of order of ε. Therefore, the contribution of

these terms to the energy functional is of order of ε2, in agreement with the qualitative

discussion at the beginning of this section. Since we are looking for corrections of order

of ε2, we have neglected the higher-order (in ε) corrections to the coefficients A±, B±. iii)

In other terms, we have retained only contributions up to the order ε2.

2. Recovering the results of a long-thin approximation

We arranged the RHS of Eqs. (78), (79) in such a way that the terms assembled in

the square brackets are the leading order terms and should yield the stability condition of

the long-thin approximation, whereas terms assembled in the curly brackets are

responsible for the correction of order ε2.

The first group of terms, when substituted to the series (70), (75) yields the

following expression for δP(a) and ψ:

δ
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Using the identities (A.6) and (A.9), one finds that
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1 2 ,      (85)
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This allows one to find the quantity δ
π

δ ξϕP
B
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0B B  in the integrand of (64)

and to perform an integration over z [we recall that ξ0 is determined by Eq. (53), with k1,2

determined by Eq. (62)]. Skipping simple but lengthy elementary integrations (when

making them, one extensively uses condition k k L1 2 2− = π / ), one finds the following

expression for the potential energy:
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At the last step, we have expressed the azimuthal magnetic field in terms of the axial

current and explicitly used Eq. (62).

At a low plasma current, the potential energy (87) is, obviously, positive. It turns

zero when the plasma current is exactly equal to that of Eq. (61). This is a test of

consistency of the two approaches used in this paper: the long-thin approximation, and an

energy principle approach, where the same result is obtained from the general expression

for the potential energy.
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3. Corrections ~εεεε2

Now we switch to the onerous task of evaluating the correction ~ε2. We first

substitute the terms in the curly brackets in Eqs. (78) and (79) into Eqs. (70) and (75),

respectively, and obtain the second-order corrections to δP and ψ.  Then we substitute

these second order terms into Eq. (64) and perform an integration. The result is the

second-order correction to W(2):
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As this is a second-order correction, we can plug into it the zeroth-order expression of the

critical  current,  i.e., set B a L Be zeϕ π η= −[ ]2 1/ ( )  and  substite k1,2  from Eq. (62). Note

that the Bessel function series in Eq. (88) are rapidly converging, because they are

alternating and, in addition, their members scale as 1/s4. Finally, from the equation

δ ∂ ∂I W I W( ) ( ) ( )( / )2 0 2= − , one finds the second-order correction to the current.

We will not present here a very lengthy explicit expression for the correction. We

note that one cannot use this analysis at η too close to 1 (in other words, at too small a

gap b-a between the plasma surface and the return current conductor). This is because we

are limited to an approximation k1,2a<<1, whereas at 1-η<<1 the wave numbers k1,2,

according to Eq. (63), scale as ( / )( )2 1 1π ηL − − . Therefore, the applicability condition for

Eq. (88) is:
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V. THE LONG-THIN APPROXIMATION AT D≠≠≠≠0, ζζζζ≠≠≠≠0

In this section we return to the long-thin approximation but for arbitrary D (Eq.

(4)) and ζ (Eq. (7)). The corresponding stability criterion can be obtained from Eqs. (58)

and (43)-(45). For the case where there is no central rod (ζ=0) these equations yield:
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The parameter R is:

R D m D D m Dm m m m= −( ) + −( ) −( ) −( ) − − −2 2 2 2 21 2 1 1 1 1 1η η η η( ) ( )     (91)

The stability boundary is determined by the equation

I

I RKS

=
1

      (92)

The boundary depends on the current distribution. For the hollow distribution (D=0) only

the m=1 mode is unstable; the instability criterion coincides with Eq. (61). For the

uniform current (D=1) all non-zero m’s become unstable simultaneously, at the current

determined by Eq. (2). The general case is illustrated by Fig. 4.

Consider now the situation where the central rod is present (ζ≠0). We start from

the hollow distribution (D=0).  In this case Eq. (58) yields:
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2 2
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η ζ

η ζ η ζ η ζ
     (93)

Clearly, only the m=1 mode can be unstable. The critical current for it can be found from

the following expression:
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I
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=
−

−( ) −( ) − − −( )
1

1 1 1 3

ηζ

η ζ η ζ ηζ
    (94)

A significant stabilizing effect requires quite a thick rod. For example, to increase the

critical current by a factor of 2 over the Kruskal-Shafranov limit at η=0, requires ζ=0.75,

i.e., a rod with the radius c=0.87a.

An interesting fact is that the system is formally stable at an arbitrarily high axial

current (we call this “a robust stability”) if both η and ζ are large enough, so that

η ζ ηζ+ + >3 1      (95)

The current in this domain can exceed the Kruskal-Shafranov current by a large factor.

Still, in order for our analysis to be valid the condition Bϕe<<Bz stemming from our

ordering must be satisfied.

The condition of robust stability for an arbitrary value of the parameter D can be

easily obtained from Eq. (58) and reads as:
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Some of the numerical results related to the m=1 mode are shown on Fig. 5. We remind

that the quantities D and η, ζ are defined by Eqs. (4) and (7), respectively.

V DISCUSSION

We have considered the ideal MHD stability of a pinch limited by two conducting

end walls. It turned out that the presence of these walls has a strong effect on the stability

limit and the mode structure even in a long-thin approximation. The reason is that the

periodic boundary conditions that are usually imposed to mimic the finite length of the

plasma system do not allow for zero plasma displacement at both end plates.
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In a long-thin case, there is a simple approach which can be used to eliminate this

deficiency: As the z-dependence is weak (by the very nature of the long-thin limit) the

perturbations can be locally (in z) considered as though there were no dependence on z at

all, and then the z-dependence would be re-introduced as a parameter. This approach

yields an eigen-equation for the radial displacement of the column surface, ξ0(z); when

the boundary conditions of the zero displacement at the end plates are imposed, one

obtains a dispersion relation, which yields the critical current.

To extend this analysis to arbitrary aspect ratio, one can use the energy principle.

We use it in the form where the potential energy perturbation is expressed in terms of the

work performed by the radial displacement of the plasma-vacuum interface and obtain a

one-dimensional functional expressed solely in terms of the function ξ0(z). This energy

functional allows one to re-derive the expression for the critical current in the long-thin

approximation, and estimate the accuracy of this approximation. The correction is of

order of (a/L)2 and depends on the geometrical parameter η.

Although our prime objective was a treatment of a formal theory problem, our

results may be relevant to several experiments. In particular, in some regimes of

spheromak discharges, the reconnection activity is associated with unstable m=1 helical

perturbations of the central part of the discharge [9] where the field lines directly connect

the top and the bottom of the flux conserver thereby mimicking the geometry of the

screw pinch. To control this instability, one may try to use a conducting insert, which

makes the central current-carrying column look like a hard-core pinch (Fig. 1b).

However, experiments carried out at the SPHEX spheromak [10] have not found any

strong effect of the central post. This may be not surprising in light of our results:
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according to Sec. V, although the presence of the core improves stability, in order this

effect to become substantial (say, to increase the critical current by a factor of 2), the

radius c of the hard core has to be not far from the central column radius a, whereas in the

SPHEX experiment it was more like 0.3a.

According to our results, a more efficient way of influencing the plasma stability

would be to introduce a conducting stem with the radius equal to the radius of the central

column (Fig. 6). If its height is, say, L/2, one can expect a two-fold increase of the critical

current. Such a techique could, in principle, be tried in the SSPX device [9].

Another experimental system for which our results may be relevant, is a

University of Maryland experiment on the stabilization of Z-pinch instabilities by

resistive moving walls [11]. Here our perfect conductivity analysis creates a reference

point with respect to which finite resistivity effects could be studied.
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 APPENDIX

The solution of Eq. (71) with the boundary conditions (69) and the function ξ0(z)

satisfying the boundary condition ξ0(0)= ξ0(L)=0 is:
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The solution of Eq. (71) satisfying the boundary conditions (25) is:
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where qs=νs/b.

To find the series of the Bessel functions that enter Eq. (83), we use the following

approach. We note that the function y(x)=xm satisfies equation (xy’)’-m2/x=0, where the

prome means the differentiation over x. Multiplying this equation by Jm(µsx) and

integrating over x from 0 to 1, one finds that

µ µ µs
m

m s m sx J x dx J2 1

0

1
+∫ =( ) ( )   (A.4)

The second step is to decompose the function y(x)=xm over the functions Jm(µsx) on the

segment 0≤x≤1. Making this decomposition and setting x=1 in the final result, one

obtains:
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Substituting Eq. (A.4) into Eq. (A.5), one finds that
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To evaluate the series that enters Eq. (84), one applies the same technique to the

function y(x)=xm+x-m, on the segment η ≤ ≤x 1. The results are:
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Figure captions

Fig. 1 The geometry of the problem. a) A vertical cross-section of a pinch without a hard

core. The shaded area represent perfectly conducting end plates (the top and the bottom)

and a perfectly conducting shell. In the unperturbed state, there is a uniform vertical

magnetic field frozen into the end electrodes. b) The geometry of a hard-core pinch. The

shaded central column is perfectly conducting and may carry an axial current.

Fig. 2. Axial eigenfunctions at various currents. The real part is shown by the solid line,

the imaginary part by the dashed line. a) An eigenfunction exp(2πiz/L), i.e., an

eigenfunction for periodic boundary conditions. Note that its real part is non-zero at

z=0,L, meaning that this eigenfunction cannot be applied to the system with conducting

end-plates. b) An eigenfunction (53) with C=1, η=0.5, and I/Icrit=1. c) An eigenfunction

(53) with C=1, η=0.5 and I/Icrit=2.

Fig. 3. The axial current distributions analyzed in this paper. The current density is

uniform in the pinch interior. There is a skin current flowing along the plasma surface.

The parameter D [Eq.(4)] is the ratio of the current in the interior to the total current

(interior plus skin) and assumes the values between 0 and 1.

Fig. 4. The stability boundary for various D’s and η’s. The sequence in which the modes

become unstable at the growing current depends on the current distribution and the

geometrical parameter η; in the case η=0, and m=1 one has Icrit/IKS=1, independently of

D.

Fig. 5 The boundary of robust stability in the (η,ζ) plane for various current distributions

for m=1 mode. The stable region is above the corresponding curve.

Fig. 6. A pinch with a partial central insert. Lightly shaded is the plasma column.
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